• OSURIS
  •  
  •  
  •  

An Unexpectedly Large Count of Trees in the West African Sahara and Sahel - Bassin Arachidier au Sénégal

This dataset provides georeferenced polygon vectors of individual tree canopy geometries for dryland areas in West African Sahara and Sahel that were derived using deep learning applied to 50 cm resolution satellite imagery. More than 1.8 billion non-forest trees (i.e., woody plants with a crown size over 3 m2) over about 1.3 million km2 were identified from panchromatic and pansharpened normalized difference vegetation index (NVDI) images at 0.5 m spatial resolution using an automatic tree detection framework based on supervised deep-learning techniques. Combined with existing and future fieldwork, these data lay the foundation for a comprehensive database that contains information on all individual trees outside of forests and could provide accurate estimates of woody carbon in arid and semi-arid areas throughout the Earth for the first time.

Simple

Date (Révision)
2022-05-17T19:08:39
Edition

1.0

Date d'édition
2015-01-01
Identificateur
https://doi.org/10.3334/ORNLDAAC/1832
Point de recherche
  NASA ORNL DAAC - NASA
Etat
Finalisé
Point de recherche
  NASA ORNL DAAC - NASA
Fréquence de mise à jour
Lorsque nécessaire

General

  • remote sensing

  • vegetation map

  • deep learning

  • Very High spatial resolution optical imagery

GEMET - INSPIRE themes, version 1.0
  • Land cover
GEMET - Concepts
  • environment
  • land
  • forestry
GCMD Keywords viewer
  • VEGETATION COVER
  • FOREST COMPOSITION/VEGETATION STRUCTURE
  • SHRUBLAND/SCRUB
  • SAVANNAS
TETIS Thesaurus, version 1.0 21112019
  • Biodiversité
Limitation d'utilisation

Credits: Brandt, M., C.J. Tucker, A. Kariryaa, K. Rasmussen, C. Abel, J.L. Small, J. Chave, L.V. Rasmussen, P. Hiernaux, A.A. Diouf, L. Kergoat, O. Mertz, C. Igel, F. Gieseke, J. Schöning, S. Li, K.A. Melocik, J.R. Meyer, S. Sinno, E. Romero, E.N. Glennie, A. Montagu, M. Dendoncker, and R. Fensholt. 2020. An unexpectedly large count of trees in the West African Sahara and Sahel. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1832. This dataset is openly shared, without restriction, in accordance with the EOSDIS Data Use Policy: https://earthdata.nasa.gov/earth-observation-data/data-use-policy?_ga=2.213474524.955659520.1604914682-676515214.1576510456

Contraintes d'accès
unrestricted
Contraintes d'utilisation
unrestricted
Restrictions de manipulation
Non classifié
Explications sur les restrictions

unclassified

Système de classification

no classification in particular

Description de manipulation

description

Type de représentation spatiale
Vecteur
Distance de résolution
50  cm
Langue
English
Jeu de caractères
Utf8
Catégorie ISO
  • Environnement
  • Carte de référence de la couverture terrestre
  • Biologie, faune et flore
N
S
E
W


Date de début
2005-11-01T00:00:00Z
Date de fin
2018-03-31T00:00:00Z
Informations supplémentaires

some additional information

Nom du système de référence
EPSG / 32628
Format (encodage)
  • GeoPackage, ESRI Shapefile ( 1.0 )

Ressource en ligne
Vector Layer WARNING: 15Gb!! ( file for download )
Ressource en ligne
Geopackage ( file for download )
Ressource en ligne
NASA African trees tilemap ( file for download )
Ressource en ligne
utm_28_tiles ( OGC:WMS )

WMS Service

Ressource en ligne
utm_29_tiles ( OGC:WMS )

WMS Service

Niveau
Jeu de données

Résultat de conformité

Autres appellations ou acronymes

This is is some data quality check report

Date (Publication)
2022-05-17T19:08:39
Explication

some explanation about the conformance

Degré de conformité
Oui

Résultat de conformité

Date (Publication)
2010-12-08T12:00:00
Explication

See the referenced specification

Degré de conformité
Oui

Résultat de conformité

Date (Publication)
2008-12-04T12:00:00
Explication

See the referenced specification

Degré de conformité
Oui
Généralités sur la provenance

The mapping of woody plants at the level of single trees was achieved by the use of satellite data at very high spatial resolution (0.5 m) from DigitalGlobe satellites, combined with modern machine-learning techniques. More than 50,000 DigitalGlobe multispectral images from the QuickBird-2, GeoEye-1, WorldView-2 and WorldView-3 satellites, were collected from 2005–2018 (in November to March) from 12° to 24° N latitude within Universal Transverse Mercator zones 28 and 29 (provided under the NextView license from the National Geospatial Intelligence). Normalized difference vegetation index (NDVI) images were used to distinguish tree crowns from the non-vegetated background because the images were taken from a period during which only woody plants are photosynthetically active in the study area. A set of decision rules was applied to select images for the mosaic, consisting of 25 × 25 km tiles. This resulted in 11,128 images that were used for the study. The neural network model (UNet; publicly available at https://doi.org/10.5281/zenodo.3978185) was used to automatically segment the tree crowns—that is, to detect tree crowns in the input images. The segmented areas were then converted to polygons for counting the trees and measuring their crown size. Using machine learning coupled to training data of 89,899 manually delineated and annotated trees, the location of individual trees over 1,300,000 km2 and their crown area were determined from the input images. Every tree with a crown area >3 m2 was enumerated resulting in 1,837,565,501 trees.

Identifiant de la fiche
51c7c1a1-33e9-4f5f-8da8-f5b7c9ebb75c XML
Langue
English
Jeu de caractères
Utf8
Type de ressource
Jeu de données
Date des métadonnées
2022-05-17T19:20:40
Nom du standard de métadonnées

ISO 19115:2003/19139

Version du standard de métadonnées

1.0

Point de contact
  CNRS UMR TETIS - Claudia Lavalley
Point de recherche
  NASA ORNL DAAC - NASA
Editeur (publication)
  NASA ORNL DAAC - NASA
 
 

Aperçus

Bandeau NASA

Étendue spatiale

N
S
E
W


Mots clés

GCMD Keywords viewer
FOREST COMPOSITION/VEGETATION STRUCTURE SAVANNAS SHRUBLAND/SCRUB VEGETATION COVER
GEMET - Concepts
environment forestry land
GEMET - INSPIRE themes, version 1.0
Land cover
General
Very High spatial resolution optical imagery deep learning remote sensing vegetation map
TETIS Thesaurus, version 1.0 21112019
Biodiversité

Fourni par

Partager

Lien vers le portail
Consultez l'intégralité des métadonnées et accédez à la donnée.

Ressources associées

Not available


  •  
  •  
  •